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I Introduction

Entanglement is a unique product of quantum mechanics, which gives rise to various
”spooky” phenomenon that do not have classical counter part. Entanglement spectrum
and entanglement entropy are windows that let people to peek through. They serve as
an important physical source which have rich applications in quantum cryptography,
quantum computation, and condensed matter physics.

A wide class of interesting quantum entangled states can be described by so-called ”sta-
blizer formalism”. This language has been widely used in quantum error correction,
fault-tolerate quantum computing, and modern condensed matter physics, for example,
the 2D toric code, 3D fracton models, and etc. I also want to mention that in strongly
disorder systems and many-body localization systems(MBL), the Hamiltonian can be
effectively described by a set of local integral of motions(LIOMs). Those LIOMs can
also be viewed as stabilizer to stablize the quantum state. From this perspective, MBL
effective Hamiltonian is also a stabilizer Hamiltonian.

In this note, we are going to review how to calculate entanglement entropy in the
stabilizer formalism.

II Stabilizer formalism

Without loss of generality, here, and in the following, we will focus on qubit systems.
Quantum states are vectors that live in the Hilbert space. For quantum states that
admit a stabilizer formalism, they can also be described by a set of Pauli operators.
Let’s begin with a simple system that composes two qubits. The dimension of the
Hilbert space is 22 = 4. Let’s have a set of Pauli operators: S = {XX,ZZ}. First of all,
we notice that elements in set S mutually commute. And they all have eigenvalues ±1.
Therefore, they divide the Hilbert space into four subspaces that can be characterized
by eigenvalues (+1,+1), (+1,−1), (−1,+1), (−1,−1), and dimension of each subspace
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is one. Hence, we can use set S to denote the following four vectors/quantum states(bell
states):

• |ψ1〉 = |(0, 0)〉 = |↑↑〉+ |↓↓〉 : EXX = 1, EZZ = 1

• |ψ2〉 = |(0, 1)〉 = |↑↑〉 − |↓↓〉 : EXX = −1, EZZ = 1

• |ψ3〉 = |(1, 0)〉 = |↑↓〉+ |↓↑〉 : EXX = 1, EZZ = −1

• |ψ4〉 = |(1, 1)〉 = |↑↓〉 − |↓↑〉 : EXX = −1, EZZ = −1

We see that set S contains two stabilizers(mutually commuting Pauli operators) that
divide the Hilbert space into four subspace, and we can distinguish them with the values
of EXX,ZZ . Now let’s construct the projection operator that project Hilbert space into
those subspaces. First, set S = {XX,ZZ} could generate an abelian pauli group
G = {II,XX,ZZ,−Y Y }. We can use a vector ~n ∈ {0, 1}2 to label the elements in
group G by g(~n) = gn1

1 g
n2
2 . One can easily check the projection operator that projects

to those pure states can be expressed by

|~k〉 〈~k| = 1

|G|
∑
~n

(−1)
~k·~ng(~n). (II.1)

Now we are ready to describe stabilizer quantum states in a more formal language.
Here we consider a model consist of a set of N qubits living on the vertices or edges of
a simple graph, with q qubits per each vertex or edge. N = q|V |, where V is the set of
graph. Let P be the Pauli group acting on N qubits. A stabilizer set S ⊂ P is a subset
of Pauli group comprised of mutually commuting operators, which satisfies |S| ≥ N .
This means there are as least as many stabilziers as qubits. Supp(S) = V , each element
of V is acted upon non-trivially by as least one stabilizer in S. The quantum states |ψ〉
which are stabilized by S = {Os} satisfy:

Os |ψ〉 = |ψ〉 , ∀Os ∈ S. (II.2)

They form the ground state manifold for the stabilizer code Hamiltonian,

Hs = −
∑
s

JsOs, (Js > 0). (II.3)

Since all members of S mutually commute, stabilizers Os in S multiplicatively generate
an Abelian group G = {Πs∈FOs : F ∈ P[S]}, where the power set P[S] of S is the set
of all subsets of S. Since elements in S may not be independent, S may over-determine
G. Let dG = log2 |G|, and {Oi}i≤dG ⊆ S be a complete independent generating set for
G. Elements g ∈ G can be labelled by a binary vector ~n = (n1, n2, · · · , ndG) ∈ {0, 1}dG
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via
g(~n) = ΠdG

i=1O
ni
i . (II.4)

With every vector ~k ∈ {0, 1}dG , we associate a projection operator,

P
~k =

1

|G|
∑

g(~n)∈G

(−1)
~k·~ng(~n) (II.5)

We can check that (P k)2 = P k, and g(~n)P k = (−1)
~k·~nP k. This implies P k is a projec-

tion operator that project to simultaneously eigenstates of all of G, and the eigenvalue
subspace are labelled by ~k. Clearly, ~k = 0 labels ground state manifold. P k is a pure
state projection if and only if dG = N . For some interesting case, such as toric code, if
the system is on a topological non-trivial manifold, dG < N . This implies the degen-
eracy for all state (ground state and excited state), the degeneracy is 2N−dG . We may
refer this as topological degeneracy.

III Entanglement spectrum and entanglement en-

tropy using stabilzier formalism

We see that stabilizer formalism gives us an easy way to describe certain interesting
quantum states. And certainly for those states, stabilizer formalism also provides us a
cheaper way to calculate entanglement spectrum/entropy.

From the previous section, we know that pure state density matrix can be written as

|~k〉 〈~k| = P k =
1

|G|
∑
~n

(−1)
~k·~ng(~n), (III.1)

if dG < N , we can add N − dG ”logical” operators to achieve the above. Consider a
bipartition (A,B) of the whole region.

ρA = TrB |~k〉 〈~k| =
1

|G|
∑
~n

(−1)
~k·~nTrBg(~n) (III.2)

Notice any element g(~n) that is not equal to identity on B must contain at least one X
or Z acting in the region B. And the partial trace on B will result in zero. Therefore,
non-zero contribution will only come from the group element operators g(~n) support
only on region A. Notice TrIB = 2NB , where NB is the number of spins in region B.
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Therefore, we can conclude

ρA =
2NB

|G|
∑
~nA

(−1)
~kA·~nAg( ~nA) =

|GA|
2NA

P
(~kA)
A . (III.3)

Note that the group GA only includes complete stabilizers in A, and stabilizers acrossing
AB region will result in zero. Since ρA is a projector, its entanglement entropy is
straightforward:

SA = NA − log2 |GA|. (III.4)

Since |G| ∼ 2N , sometimes one prefers not to list all the elements in group G and find
GA. Could we use the information of the generators of G? The answer is yes. The idea
is mainly from literature[1]. Let PA be the map that takes gA ⊗ gB ∈ G onto gA ⊗ IB.
Theorem: The generators for stabilizer group G of a bipartite state can always be
brought into the canonical form:

G = 〈ai ⊗ IB, IA ⊗ bj, gk, ḡk〉. (III.5)

The first two generators will generate GA and GB, which are local subgroup of G.
The generators of GAB are p = p(GAB) anti-commuting pairs (gk, ḡk), where PA(gk)
commute will all generators of G, except ḡk, and PA(ḡk) commute with all the canonical
generators of G except for gk. Therefore,

SA = p =
|GAB|

2
. (III.6)

So calculating entanglement entropy is equivalent to search of anti-commuting pairs
in the projections on A or B of the generators of G. Equivalently, one can compute
the rank of PA(G), which is the rank of a n × 2n matrix with elements in Z2[1]. This
concludes the discussion of using stabilizer formalism to calculate entanglement entropy
of a stabilzier state.
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