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1 General framework of spin relaxometry

In the experiment, in order to detect the spectrum function, we usually couple the system

with a probe. The property of the system, such as correlation function, will affect the

dissipate of the probe. And this relation is usually called fluctuation-dissipation theorem.

Here, we develop the general framework of using spin probe, such as NV center, to detect

magnetic field fluctuation.

Here, we consider the spin probe Hamiltonian as

H =
ω

2
σz − gµBσ · B(r, t). (1)

where B(r,t) represents the magnetic field generated by the sample at spin probe location.

We assume the effect of spin probe on the sample can be neglected. We assume the material

is in thermal equilibrium at temperature T. Then the state of the material is describe by

density matrix, ρ =


n pn|n〉〈n|, with pn = e−βωn/Z. Then the state of total system is

the tensor product of those two: |n, σ〉 = |n〉 ⊗ |σ〉. The relaxation time T1 of the spin

probe is defined as
1

T1

=
1

2
(
1

Tab

+
1

Tem

) (2)

where 1/Tab and 1/Tem can also be called as absorption rate and relaxation rate respec-

tively. We can use the Fermi golden rule to write down

Rem = 2π


n,m

e−βωn

Z |〈m,−|gµBσ · B|n,+〉|2δ(ω + ωn − ωm) (3)

= 2π(gµB)
2


n,m

eβωn

Z (Bx
nmB

x
mn +By

nmB
y
mn + iBy

nmB
x
mn − iBx

nmB
y
mn)δω + ωnm (4)

= 2π(gµB)
2


n,m

e−βωn

Z B−
nmB

+
mnδ(ω + ωnm) (5)

where Bi
mn = 〈n|Bi|m〉. We notice the spin energy gap is ω, therefore the only model of

the magnetic field B oscillate at frequency ω will couple to the spin probe. In other word,

we assume the response is linear.

Similarly, we can work out the absorption rate using Fermi golden rule,

Rab = 2π(gµB)
2


n,m

e−βωn

Z B+
nmB

−
mnδ(ω − ωnm) (6)
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The relaxation rate can be conveniently expressed in terms of the noise tensor Nij(ω),

defined as

Nij(ω) =
1

2

 ∞

−∞
dt〈{Bi(t), Bj(0)}〉eiωt (7)

=


n,m

e−βωn

Z [Bi
nmB

j
mnδ(ω + ωnm) +Bj

nmB
i
mnδ(ω − ωnm)]. (8)

such that
1

T1

= µ2
BN−+(ω) (9)

Notice the noise tensor is the correlation. Or in some literatures, it is called fluctuation.

It can be related to dissipation, the imagery part of retarded Green function, through

fluctuation-dissipation theorem. We will derive the relation below.

The retarded green function is defined as

χR
ij(t) = −iθ(t)〈[Bi(t), Bj(0)]〉 (10)

It is closed related to the linear response Bi(t) of system if you apply the driving force

f(t)Bj. Details is listed in the appendix. The retarded Green function can be expressed

using its real (χ
′
ij(t)) and imagery part (χ

′′
ij(t)). We omit the letter R later. The imagery

part of χij(t) can be written as

χ
′′

ij(t) = − i

2
[χij(t)− χji(−t)]. (11)

This can be proved using

χ
′′

ij(ω) = − i

2
(χij(ω)− χ∗

ji(ω)) (12)

which tells that the dissipative response comes from the anti-Hermitian part of χij(ω)

matrix. By Fourier transformation, we can prove the real time relation.

Plug Eq.(9) to Eq.(11), we have

χ
′′

ij(t) = − i

2
[−iθ(t)〈Bi(t)Bj(0)〉+ iθ(t)〈Bj(0)Bi(t)〉 (13)

+iθ(−t)〈Bj(−t)Bi(0)〉 − iθ(−t)〈Bi(0)Bj(−t)〉 ] (14)

=
1

2
〈Bj(0)Bi(t)〉 − 1

2
〈Bi(t)Bj(0)〉 (15)

Notice

〈Bj(0)Bi(t)〉 = 〈Bj(−t)Bi(0)〉 = Tr

e−βHBj(−t)Bi(0)


(16)

= Tr

e−βHBj(−t)eβHe−βHBi(0)


(17)

= Tr

e−βHBi(0)Bj(−t+ iβ)


= 〈Bi(t− iβ)Bj(0)〉 (18)

3



Therefore,

χ
′′

ij(t) = −1

2
[〈Bi(t)Bj(0)〉 − 〈Bi(t− iβ)Bj(0)〉] (19)

If we define Cij(ω) =

dteiωt〈Bi(t)Bj(0)〉, we have

χ
′′

ij(ω) = −1

2
(1− e−βω)Cij(ω) (20)

From

χ
′′

ij(t) =
1

2
〈Bj(0)Bi(t)〉 − 1

2
〈Bi(t)Bj(0)〉 (21)

we can also change the second term,

〈Bi(t)Bj(0)〉 = Tr

Bj(0)e−βHBi(t)


(22)

= Tr

e−βHBj(0)e−βHBi(t)eβH


(23)

= Tr

e−βHBj(0)Bi(t+ iβ)


(24)

= 〈Bj(0)Bi(t+ iβ)〉. (25)

If we define Cij(ω) =

dteiωt〈Bj(0)Bi(t)〉, then

χ
′′

ij(ω) =
1

2


1− eβω

 Cij(ω) (26)

To summarize, we have

2χ
′′
ij(ω)

1− eβω
= Cij(ω) (27)

−2χ
′′
ij(ω)

1− e−βω
= Cij(ω) (28)

We notice the noise tensor is Nij(ω) =
1
2
Cij(ω)+

1
2
Cij(ω). Therefore, we arrive the essence

of the fluctuation-dissipation relation,

Nij(ω) = − coth(
βω

2
)χ

′′

ij(ω), (29)

where the left hand side tells the fluctuation of the system at thermal equilibrium, and

the right hand side tells you the dissipative response of the system.

To summary, we have
1

T1

= −µ2
B coth(

βω

2
)χ

′′

−+(ω) (30)

In the following, we will see this relation tells us how to measure the magnetic order,

spin dynamics and etc. of the materials by measuring the relaxation rate the spin probe.
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2 Sample induced magnetic fluctuations

In this section, we use dipole approximation to calculate the magnetic field fluctuations at

the spin probe, caused by the thermal spin fluctuation in the sample.

Recall the Maxwell equation is

(− 1

c2
∂2

∂t2
+∇2)Aµ = −(0, µ0

J) = −µ0(0,∇× m), (31)

where m = gσµB
S(ρ, t)δ(z), and ρ is the x-y plane coordinate. Here we follow the definition

in ref.[1], where m = −gσµB
S(ρ, t)δ(z), so the Maxwell equation reads

(− 1

c2
∂2

∂t2
+∇2)Aµ = µ0(0,∇× m), (32)

We use the Green function method to solve the Maxwell equation by defining

Aµ(r, t) = µ0


dt′dr′Gµ

i (r − r′, t− t′)mi(r
′, t′) (33)

where the Green function or the magnetic kernel needs to satisfy the following equation:

(− 1

c2
∂2

∂t2
+∇2)Gµ

i (r − r′, t− t′) = δ(t− t′)[0,∇× (δ(ρ− ρ′)δ(z − z′)ei)] (34)

We assume the material has size L2. By defining the discrete Fourier transformation,

Gi
µ(r, t) =

1

L2



q


dω

2π
Gi

µ(z, q,ω)e
iq·ρ−ωt (35)

then the Green function equation becomes


ω2

c2
− q2x − q2y + ∂2

z


Gµ

i (z, q,ω) = [0, (iqx, iqy, ∂z)× (δ(z − z′)ei)]µ (36)
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The solution can be found as

Gµ
x(z, q,ω) =

e−λ|z|

2





0
0

sign(z)
iqy
λ





µ

(37)

Gµ
y (z, q,ω) =

e−λ|z|

2





0
−sign(z)

0

− iqx
λ





µ

(38)

Gµ
z (z, q,ω) =

e−λ|z|

2





0

− iqy
λ

iqx
λ
0





µ

(39)

where λ =


q2 − ω2

c2
. By defining Fourier transformation as

Aµ(r, t) =
1√
L2



q


dω

2π
Aµ(z, q,ω)ei(q·ρ−ωt) (40)

mi(r, t) =
1√
L2



q


dω

2π
mi(q,ω)e

i(q·ρ−ωt)δ(z), (41)

we can verify that

Aµ(z, q,ω) = µ0G
µ
i (z, q,ω)mi(q,ω). (42)

And we can express B(r, t) as

B(r, t) =
µ0√
L2


dω

2π



q

[(iqx, iqy, ∂z)×Gµ
i (z, q,ω)]mi(q,ω)e

i(q·ρ−ωt) (43)

=
µ0√
L2



q


dω

2π
Hi(z, q,ω)mi(q,ω)e

i(q·ρ−ωt), (44)

where Hi(z, q,ω) = (iqx, iqy, ∂z)× Gi(z, q,ω).

From Eq.21, the important relation is

−χ
′′

ij(t) =
1

2
〈[Bi(t), Bj(0)]〉 (45)
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or in Fourier space

−χ
′′

ij(ω) =


dteiωt

1

2
〈[Bi(t), Bj(0)]〉 (46)

We are going to use these relation to derive relaxation time as a function of spin-spin

retarded green function. In the following, we define

Sij(ω) =


dteiωt

1

2
〈[Bi(t), Bj(0)]〉 (47)
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3 Appendix

Proof: 〈mα(q1,ω1)mβ(q2,ω2)〉 = δ(ω1 + ω2)δ(q1 + q2)〈mα(q1,ω1)mβ(−q1,−ω1)〉.
Because

〈mα(t1, ρ1)mβ(t2, ρ2)〉 = 〈mα(t1 − t2, ρ1 − ρ2)mβ(0, 0)〉 (48)



q1,q2


dω1

2π


dω2

2π
e−iω1t1−iω2t2+iq1ρ1+iq2ρ2〈mα(ω1, q1)mβ(ω2, q2)〉 (49)

=


q1,q2


dω1

2π


dω2

2π
e−iω1(t1−t2)eiq1(ρ1−ρ2)〈mα(ω1, q1)mβ(ω2, q2)〉 (50)

Therefore, ω1 = −ω2, q1 = −q2.
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