Simple argument on LSM theorem

Hong-Ye Hu^{*1}

¹Department of Physics, UCSD

March 27, 2020

^{*}email:hyhu@ucsd.edu

This note review the essential argument about LSM theorem made by Oshikawa:

In a quantum many body system with periodic boundary condition and well-define conserved particle number, a finite excitation gap is possible only when particle number per unit cell of ground state is an integer number. Otherwise, it could be **gapless**, **symmetry breaking**, or **topologically ordered**.

Argument:

Suppose we have a quantum many-body state lives on a lattice $L_x \times L_y$ with periodic boundary condition. We arrange the lattice in to a cylinder and magnetic flux ϕ in the \hat{x} direction is piercing through the cylinder. In the simplest gauge choice, we could choose $A_x = \phi/L_x$. Let's first review single particle in magnetic field and gauge transformation. If a particle with charge q = -e in a gauge field (ϕ, \vec{A}) , then the Schodinger equation is:

$$\frac{1}{2m} \left(\vec{p} + \frac{e}{c} \vec{A} \right)^2 \psi = (E + e\phi)\psi \tag{.1}$$

If we do a gauge transformation: $\psi \to e^{-i\frac{1}{\hbar c}f}\psi$, then $\vec{A} \to \vec{A} - \nabla f$.

Suppose the system is in the ground state $|\psi_0\rangle$ when $\phi = 0$. We can choose $|\psi_0\rangle$ is also an eigenstate of the translation operator $T_x = \exp\left(-\frac{i}{\hbar}p_x\right)$, since $[T_x, H] = 0$. So $T_x |\psi_0\rangle = \exp(-\frac{i}{\hbar}P_0) |\psi_0\rangle$. We can adiabatically increase ϕ by a flux quanta $\phi_0 = hc/e$. And the ground state of $H(\phi_0)$ is $|\phi'_0\rangle$. Usually $H(\phi)$ differs from H(0) and has ABeffect as a physical different consequence. But $H(\phi_0)$ can be gauge transformed to H(0).We can do a a gauge transformation $U = \exp\left(-\frac{2\pi i}{L}\sum_{\vec{r}}xn_{\vec{r}}\right), \psi \to U\psi$, and $\vec{A} \to n\frac{hc}{eL} - \frac{hc}{eL}\sum_r n_{\vec{r}} = 0$. Therefore, $U^{\dagger}H(\phi_0)U = H(0)$, and $|\phi'_0\rangle$ is mapped to $U |\phi'_0\rangle$. Now we are going to prove that $U |\phi'_0\rangle$ and $|\phi_0\rangle$ are different ground state. We are going to calculate $T_x U |\phi'_0\rangle$.

$$T_{x}U |\phi_{0}^{'}\rangle = UU^{\dagger}T_{x}U |\phi_{0}^{'}\rangle = UT_{x}e^{-\frac{2\pi i}{L}N} |\phi_{0}^{'}\rangle (.2)$$

Therefore, the momentum of final state is $P_0 + \frac{2\pi N}{L}$. $N = \frac{p}{q}L_xL_y$, so $P_{\text{final}} = P_0 + 2\pi \frac{p}{q}L_y$. Because $\frac{p}{q}L_y$ is not a integer, $U |\psi'_0\rangle$ and $|\psi_0\rangle$. One can repeat the argument q times to get q-degenerate ground state. The degeneracy may be arise from symmetry breaking or topological order. And it is too general to get more information on that.

References

[1] M. Oshikawa. PhysRevLett.84.1535(2000). Commensurability, Excitation Gap, and Topology in Quantum Many-Particle Systems on a Periodic Lattice.